
JOURNAL OF MATERIALS SCIENCE 22 (1987) 989-1000 

Crack formation beneath sliding spherical 
punches 

R. M O U G I N O T  
Etablissement Technique Central de I'Armement, 16bis Avenue Prieur de la Cote D'Or, 
94114 Arcueil Cedex, France 

Using Hamilton's equations (1983) for computing the stress trajectories corresponding to the 
crack path, and the method proposed by Mouginot and Maugis (1985), based on Lawn's 
analysis (1967) it is possible to express the strain energy release rate G, for various crack 
initiation radii and various friction coefficients. The initial radius of the crack can then be 
determined by maximizing G, and the critical load required to initiate it can be computed by 
application of the Griffith criterion, as a function of the following parameters: the elastic 
characteristics of the materials, the punch radius, the initial flaw size and the friction coef- 
ficient. The analysis proposed by Gilroy and Hirst is shown to be the lower bound of this 
theory. The theoretical results are compared with published experimental results, and are 
discussed. 

1. I n t r o d u c t i o n  
In 1967 Frank and Lawn [1] proposed a theoretical 
analysis for the Hertzian crack initiation, which was 
based on the energy balance (Griffith's criterion [2]) 
and the Hertz-Huber's stress field [3, 4]. They com- 
puted the strain energy release rate function @ which 
is a normalized expression of the strain energy release 
rate, G depending on the normalized crack size c/a. 
However, their assumptions were not in agreement 
with experiments (they supposed that starting radius 
of the crack was at the edge of the contact circle, and 
that the Poisson's ratio was v = 0.33). Wilshaw [5] 
and later Warren [6] have shown that these assumptions 
were too restrictive and altered the estimation of the @ 
function. 

Recently, Mouginot and Maugis [7] proposed a new 
analysis for crack initiation under cylindrical flat or 
spherical punches, using Lawn's method. Their com- 
putation of the q) function for various starting radii 
and for v = 0.22 (the effect of  the Poisson's ratio is 
also studied) leads to an explanation of the Auerbach's 
law [8] based on the low variation (with the relative 
flaw size cf/a) of @ on the envelope of the curves near 
its maximum. Crack initiation radii and critical loads 
are computed as function of the normalized flaw size 
cf/a. The critical loads can also be determined as 
function of R/c~/2, a parameter which does not depend 
on the increasing contact radius, R being the radius of 
the spherical punch. These computations were shown 
to be in agreement with experiments on optical glass. 

The method described in [7] will now be extended to 
crack initiation under hertzian sliding contact. Lawn 
proposed in 1967 [9] a similar study, but based on still 
too restrictive assumptions, as pointed out by Enomoto 
[10]. Gilroy and Hirst [11] gave an analysis based on 
the assumption that the failure occurs at the same 
maximum tensile stress beneath a sliding contact as 
that beneath a normal hertzian one. This analysis will 
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be further discussed. Hamilton and Rawson [12] pro- 
posed a flaw statistic analysis of that problem and 
Lawn et al. (1984) [13] studied the equilibrium of the 
formed partial cone crack under a sliding hertzian 
contact. The failure process under elastic-plastic con- 
tact (sharp indenter) with tangential loading was 
studied by Swain [14]. The stress field for Hertzian 
sliding contact was determined in cartesian coordinates 
by Hamilton and Goodman [15] in 1966 and given 
explicitly by Hamilton [16] in 1983. 

The analytical method will be described and com- 
pared with experimental results obtained by Gilroy 
and Hirst [11] (1969), by Enomoto [10], by Chiang and 
Evans [17], by Powell and Tabor [18] and by Barquins 
et al. [19]. Geometrical aspects of the problem are 
described in Fig. 1. 

2. The stress field 
The stress equations have been given by Hamilton [16] 
in an explicit form, with typographical mistakes cor- 
rected in Appendix A. The contours of the normalized 
principal stresses in the symmetry plane y = 0 are 
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Figure 1 Tridimensional aspects of the problem; the crack path is 
drawn after [13, 19, 22]. 
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Figure 2 Contours of the normalized principal 
stress a~ in the symmetry plane f o r f  = 0 , f  = 0.5 
a n d f  = 1.0 and with a Poisson's ratio v = 0.25. 
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here completely numerically computed and are shown 
in Figs 2, 3 and 4 for the friction coefficients f = 0; 
f = 0.5 a n d f  = 1. The principal stress trajectories in 
the same plane are plotted in Fig. 5. The ~2 stress 
trajectory in surface starting from the point ( -  1,0, 0) 
is shown in Fig. 6 for various friction coefficients. All 
these figures have been established with a Poisson's 
ratio v = 0.25. On the surface, according to Way [20] 
the stresses outside the contact area do not depend on 
the stress distribution inside the contact area. They are 
the same as those given by Swain [14] for a concen- 
trated force (with typographical mistakes corrected in 
Appendix B), f rom Mindlin's computat ion [21]. This 
point was numerically verified [22]. The following 
equations, from Hamil ton 's  paper [16], are given for 
the surface along the x-axis outside the contact circle 
(the contact radius a is taken as a = 1), in normalized 
coordinates: 
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E Pm - 2 x 2 + ¼f (4 
-~ V) { (x2 -- X l )2  

2V(X2 X31)1 /21}  

(1) 

, 2 _ , {  
Pm 2 ~ + 3f  X' (1 + 3x~) 

_ ,g-, L2 : ,,,q}) 

P 
Pm - -  ?ca 2 

with 

3. T h e  f r a c t u r e  a n a l y s i s  
The analysis is based on the following assumptions: 

(2) 
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Figure 3 Contours of  the normalized principal 
stress tr 2 in the symmetry plane f o r f  = 0 , f  = 0.5 
a n d f  = 1.0 and with a Poisson's ratio v = 0.25. 
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(i) The crack initiates on the surface "behind" the 
contact circle, on the x-axis. The starting locus xo/a  of 
the crack on this axis will be written ro/a and named 
starting radius of the crack, by comparison with the 
hertzian fracture under normal loading. 

(ii) The crack path follows the surface defined by 
a 2 -  o-3 stress trajectories (starting from points 
(x, 0, 0)), i.e. it follows the corresponding o- 3 stress 
trajectory in the plane y = 0, x < - a, a being the 
contact radius. Experimental observations show that 
the tri-dimensional crack shapes always look like the 
computed shapes of the corresponding surfaces 
described by the stress trajectories [10, 19, 22]. 

(iii) The stress intensity factor, generally given for 
hertzian crack by: 

Ol(b  ) 
KI = 2 [cj0rb rc (c 2 - -  b2) 1/2 db (3) 

which has been derived for an internal crack of length 

2c in an infinite plate, subjected to a normal tensile 
stress o"1 (b) along its length. 

The correction term rb/r c has been introduced 
because of the conical geometry of the studied crack 
[4]. In the case of sliding contact with friction coef- 
ficient larger than 0.39 conical crack path are not close 
any more, for v = 0.25. Although the crack geometry 
is no longer axisymmetrical, the rb/r c correction factor 
has been maintained. This is justified by its lower 
effect at high friction coefficient values. 

(iv) For using this K, estimation scheme it is necess- 
ary to assume that the normal tensile stress repartition 
a~ (b) on the crack path in the symmetry plane y = 0 
does not vary too much on the both sides of this plane. 
Fig. 7 shows that the cr, gradient along a o'2 trajectory 
is lower than that along the corresponding a3 trajec- 
tory (the ~r, stress repartition is computed in Fig. 7 
along o-z and ~r 3 stress trajectories starting from point 
( - 1 ,  0, 0)). The larger the friction coefficient the 
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Figure 4 Contours of the normalized princi- 
pal stress ~r 3 in the symmetry plane for f  = 0, 
f = 0.5 and f = 1.0 and with a Poisson's 
ratio v = 0.25. 
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larger the maximum of al and the steeper the 0.t stress 
gradient along the 0- 2 and 0-3 stress trajectories. It will 
be assumed, as for any tridimensional crack that the 
crack front is in a locally plane strain situation near 
the symmetry plane and that the stress distribution 
along the 0-3 trajectory varies only slightly on both 
sides of the symmetry plane when (cda) < 0.1. Then: 

1 - -  v 2 
G = ~ K? (4) 

where v and E are respectively the Poisson's ratio and 
the Young modulus of the indented material. By 
inserting Equation 3 into Equation 4 we obtain: 

4 1 - v 2 pZ 
g3 E a3 [f~(c/a)]ro/a,f,v (5) 

[f~( e / a)],o/a.f,v 
Yb 

re 
f(b/a) t 12 (c~ - -~'~ ,2 db/a 

\ ~  " ~1 (6) 
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where 
el(b/a) 

fCb/a) = 
with Pm 

P 
= - -  ( 7 )  Pm rca 2 

The strain energy release rate function qb is plotted 
in Fig. 8 for f = 0, f = 0.2, f = 0.5 and f = 1.0, 
respectively. As f increases both the maximum of the 

curve envelope and the corresponding crack size 
become larger. 

If  the initial flaw size cf/a is very small, say 
cda < 0.001, a~ may be considered as constant along 
it and given by Equation 1 (undiminishing stress field). 
The analytical integration of Equation 6 gives then: 

G - 1 - - v 2 1 1 - 2 v (  4 + v ) ]  2 
2 I + ~frc 1 - 2 v  

p2 (a,~4 cf (8) 

× ~ \;oo] ; 
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Figure 5 Stress trajectories in the plane of  symmetry  for the 
friction coeff ic ientsf  = 0.5 a n d f  = 1.0 with v = 0.25. 
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4. Init iat ion of the partial cone crack 
4 . 1 .  S t a r t i n g  r a d i u s  o f  t h e  c r a c k  
Under hertzian contact, it has been observed experi- 
mentally that cracks will initiate outside the contact 
edge. A simple explanation was given in a previous 
paper  [7]: for a given initial flaw size c f / a ,  a crack will 
start at the radius where the strain energy release rate 
is maximum, a being the contact radius just before 
failure. Moreover,  Johnson et al. [23] have shown that 
the hertzian stress field is modified by the elastic mis- 
match between the indenter and the specimen and 
that, due to interfacial shear stresses, the maximum 
tensile stress acts in surface outside the circle of  con- 
tact. However,  the computat ion with Hamil ton 's  
equations gives a maximum tensile stress at the edge of 
the contact circle. 

The crack extension will then be governed by the 
@(rola ) curve which is tangent to the  envelope of the 
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Figure 6 Stress trajectories of ~r 2 on the surface for various friction 
coefficients, starting from the point ( -  1, 0, 0). 

dO curves at the cf/a abscissa. The starting radii ro/a 
maximizing • are plotted as a function of cf/a on Fig. 
9 for various friction coefficients. The starting radius 
decreases as f increases  and f o r f  > 0.4, the crack will 
always start at the edge of the contact, as shown in 
Fig. 10 where ro/a is drawn as a function of  f for some 
values of  g/a. 

4 . 2 .  T h e  c r i t i c a l  l o a d  
Equation 5 and Griffith's criterion G = 2? where 7 is 
the surface energy lead to: 

f r o L E  _ a 3 ~1/2 

P~ = ~2(l _ vZ) ?)m { [~(~/a)],ola,ij (9) 
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Figure 7 a~ stress reparti t ion along the o 2 stress trajectory on  surface 
and the % stress trajectory in the symmetry  plane, bo th  start ing 
f rom the point  ( -  1, 0, 0), c/a is the normalized curvilinear coor-  
dinate along these trajectories. The curves are plotted for f = 0, 
f = 0.5 a n d f  = 1 with v = 0.25. 
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Figure 8 Strain energy release rate function • against normalized crack length for various starting radii ro/a and f o r f  = 0 , f  = 0 .2 , f  = 0.5 
and f =  1.0. 

[f~(cf/a)]~o/la2,f is the normalized critical load for crack 
initiation and is plotted in Fig. 11 as a function of cf/a 
for f =  0, f =  0.1, f =  0.25, f =  0.5 and f =  1. 
Note that the critical load decreases asfincreases and 
that Auerbach's range corresponding to the plateau of 
the curves shifts to higher cf/a values according to the 
general (I) curves of  Fig. 8. In Fig. 12 the ratio Pcf/PcN 
between the critical load under sliding contact with a 
given f and critical load under normal Hertzian con- 
tact is drawn at a given normalized flaw size cf/a. (a is 
the contact radius just before crack initiation). 
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When the initial flaw size g/a is very small, 
(undiminishing stress field) and • function is then 
easily determined. We find, using Equation 8: 

8~ E~ ~i2 
Pc = (1 -- v z) [1 - 2v + I f  x(4 + v)]2J 

× a 3/2 (10)  
\ e l /  

But, as shown in the previous paper [7], Equation 9 is 
not very convenient because of  the variation of  the 
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Figure 9 NormaLized starting radius of  the crack as function of  the 
reduced flaw size for some values of  the friction coefficient. 

contact radius with the applied load, so that the initial 
flaw size depends on the load. Following the method 
described in [7], it is possible, by using Hertz's relation: 

a3 3 ( ~ _ ~ )  = ~ kPn (11) 

in Equation 9, to express Pc as: 

3n 3 
Pc = kyR (12) 

8[~(crla)],o/o,s,, 
where 

1 - v t 2  E 
k = 1 + 1 - v 2 E '  (13) 
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Figure 11 Normalized critical load [d#(cf/a)]7oy2,i as function of the 
reduced flaw size for various friction coefficients. 

(k = 1 for rigid indenters and k = 2 for identical 
m a t e r i a l s ) ,  dp(cf/a) is determined on the envelope of 
the (I) curves by the intersection with the straight lines 
given (not plotted, see [7]) by: 

[f~(cf/a)]ro/a,f,v -- grc3(1 - -  V2) R2k2 ( ~ )  3 
32 7 Ec----~r (14) 

obtained by eliminating Pc between Equations 11 and 
12. One can then plot Pc/TR as function of  R/c~/2 in 
Fig. 13, which does not depend on the contact radius. 
For  each friction coefficient, there is a range of  R/c~/2 
where Pc/TR has a plateau as expected from Figs 8 and 
11; in this range, the P~-R relation follows Auerbach's 
law. 

For  plotting the Fig. 13 7/E = 5.10 l~mwas taken, 
which is a representative value for glass. 

In Auerbach's range, ~ remains constant and 7 can 
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Figure 10 Normalized starting radius of  the crack as function of  the 
friction coefficient for some values of  the reduced flaw size. 

be easily determined by: 

7 = A(f)Pc/kR (15) 

where A(f) depends o n f a n d  on the Poisson's ratio, 
and is given by the maximum of the envelope of  d). For  
example (with v = 0.22): 

f o r f  = 0 7 = 1.49 lO-4pc/kR 
f o r f  = 0.2 7 = 1.43 lO-3pc/kR 
f o r f  = 0.5 7 = 1 lO-2Pc/kR 

(16) 

On Fig. 13 straight lines corresponding to constant 
cr/a = 0.1 for k = 1 and k = 2, which are limits for 
a validity of  this analysis are also plotted. 
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Figure 12 Ratio of  critical loads beneath sliding against normal  
hertzian contact at some constant  values of  the reduced flaw size, as 
a function of the friction coefficient. 
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Figure 13 Critical load as function of the radius of"the punch in 
normalized coordinates, given for k = 1 (rigid punch) and k = 2 
(same materials) and for some coefficients of friction. Undiminish- 
ing stress field case is plotted for k = 1, and the limit of the flaw size 
is plotted for k = 1 and k = 2. 

The 2 = P~r/P~N ratio between a critical load Pcf at 
a given f and the critical load PoN for the normal 
hertzian contact is given from Equation 12 by: 

2 = [~(er/a)]r°#"/=° 7" for a given R/c~/2 
[O(cf/a)]ro/a, f 

(17) 

where ~ is the surface energy of  the material indented 
by the hertzian method and 7* is the modified surface 
energy during the sliding test. It is plotted for given 

.,~= ,Ocf/Pcn 

R/c~/2 as a function of f i n  Fig. 14. The reduction factor 
2 for the critical load decreases strongly when the 
friction coefficient increases and it decreases slightly 
when the punch radius increases. 

The critical load for an undiminishing stress field 
(very small cr/a) is given by: 

Pc = [1 - 2 v + ~ f ~ ( 4 + v ) ]  3 " 

x c3/2 for a given R/c~/2 (18) 
f 

by using Equation 10. It is also shown on Fig. 13 for 
the four values o f f .  

The ratio 2 for undiminishing stress field is given by: 

1 + ~ f ~  1 - 2v 

For experiments performed in the same environments 
and with the same punch this equation becomes: 

1 
= [ (4 +v (20) 

I + U~ U _--2T~j J 

This equation, first proposed by Gilroy and Hirst [l 1], 
corresponds to a lower bound for the reduction ratio 
2 given by the Equation 17. That  limiting reduction 
factor is shown on Fig. 14 for v = 0.15, v = 0.19 
v = 0.22 and v = 0.3. 

Gilroy and Hirst's reduction factor is based on the 
assumption that the failure occurs at the same maxi- 
mum tensile stress beneath a sliding spherical contact 
and beneath a normal hertzian's one. This assumption 
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ff~ 10°.1 -~/2 
~,2_ 10 6 j,~-1/2 

3~ 10 7-1/2 
/ ) = 0 . 2 2  Figure 14 2 ratio of critical loads for sliding 

against hertzian contact as function of the friction 
coefficient f, plotted for three values of the nor- 
malized punch radius and with v = 0.22. Dashed 
lines correspond to the same ratios in the undimin- 
ishing stress field case, given for v = 0.15, 0.19, 
0.22 and 0.3. Experimental results from Gilroy 
and Hirst [11] and from Powell and Tabor [18] are 
also plotted. Gilroy and Hirst; • R = 2 mm, O 
R = 2.4mm, • R = 4.4mm, • R = 4.8mm, • 
R = 9.5mm. Powell and Tabor; • R = 0.55ram, 
zxR = 5 m m , [ ] R  = 6mm. 



only holds in the case of  an undiminishing stress 
field. 

For  larger initial flaws, subjected to a a~ (b) normal 
tensile stress repartition this assumption would have 
no physical basis. Initial flaw will reach an equilibrium 
when G = 2~, also under sliding contact and then the 
failure will occur when G sliding = G hertzian = 2~. 

It would be interesting to compare the maximum 
tensile stress for the sliding and the normal hertzian 
contact, at the edge of  the contact, i.e. on the point 
( -  1, 0, 0) for a given R/c~/2 value. This ratio has been 
obtained from Equation 1 and Equation 12 and the 
relation is: 

( 3~" l--zv/4 +v ~ (~[@(cr/a)]'°/a'i=°[f~(cf/a)]ro/a,f J'~l/3 
O'msl id ing  - -  1 -I- ~ J ~  " ; ~ ' - ~  / 

O'na hertzian 

(21) 

This ratio is plotted in Fig. 15 as a function of  the 
friction coefficient f for three values of R/e~/2. It is 
equal to 1, as expected, in the case of  the undiminish- 
ing stress field hypothesis. These curves confirm that 
the material does not fail at the same maximum tensile 
stress under sliding contact and under normal hertzian 
contact. 

4 . 3 .  A u e r b a c h ' s  r a n g e  
The dependence of  Auerbach's range of  the friction 
coefficient f can be estimated from Fig. 13. Because 
Auerbach's law corresponds to the maximum of  the 
envelope of the • curves, computing the abscissa 
R/c~/2 of this maximum at different fconf i rms  this low 
variation: for f = 0, Rm/C~/2 = 1.7 x 105m -l/= and 
f o r f  = 1, Rm/c3f/2 = 2.8 x 105m -1/2 

Lawn [9] proposed that Auerbach's law does not 
apply when f > 0.02. This theory was based on the 
particular shape (two maxima) of the • curve at 
ro/a = 1 and v = 0.33. With these values the • curve 
has only one maximum i f f  > 0.02. This theory can- 
not explain the Auerbach's law when ro/a > 1 or 
v < 0.33 for which experimental Auerbach's range 
has been measured, even under a normal Hertzian 
contact or under a sliding one. This was first pointed 
out by Wilshaw [5], Warren [6] and Enomoto [10]. 

4 .4  I n f l ue nc e  of  t he  P o i s s o n ' s  rat io on  2 
The huge influence of the Poisson's ratio on the strain 
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Figure 15 Ratios of  the maximum tensile stresses beneath a sliding 
against a normal hertzian contact, computed at the critical loads 
and plotted for three values of  the normalized radius of  the punch 
and in the undiminishing stress field case. 
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Figure 16 2 as function of  the Poisson's ratio for three values of  the 
friction coefficient. For  each value of  f a r e  plotted the curves corres- 
ponding to the undiminishing stress field case and to two values of  
the normalized punch radius. ( - - - )  R/C 3/2 = 106m -1/2, ~ . . . . . . .  ) 
R/C:/2 = 107 m-l/2, ( ) undiminishing stress field. 

energy release rate function was shown in the previous 
paper [7]. 

Its effect on the reduction ratio 2 is now studied, 
first by computing 2 in the undiminishing stress field 
case (Equation 20) then by computing this ratio in the 
general case given by Equation 17 for two values of 
R/c~ 2. These results are plotted in Fig. 16. 

The ratio between the values of  2 computed for an 
undiminishing stress field case to that computed for a 
given R/c~ 2 remains approximately constant for the 
Poisson's ratio ranging between 0.19 and 0.25. It is 
then possible to correlate the results obtained with 
v = 0.19 (TIC) to those obtained with v = 0.22 
(glass) as mostly assumed in this paper. 

5. E x p e r i m e n t a l  resu l ts  and d iscuss ion  
The experimental results obtained by Gilroy and Hirst 
[11], Enomoto [10], Powell and Tabor  [18], and 
Barquins et al. [19] are reanalysed. Gilroy and Hirst 
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[11] like Enomoto run experiments on soda lime glass 
in various environmental liquids, Powell and Tabor 
on TiC and Barquins et aI. on silicon. Experimental 
details are described in the concerned papers. 

5.1. Starting radius of the crack 
Gilroy and Hirst [11] and even Enomoto [10] gave no 
information about the starting radius of the crack. 
Lawn [9] noticed that "at  f = 0.1 the crack initiates 
from very near to the trailing edge of the indenter". 
Powell and Tabor [18] gave more details on this point, 
they found normalized starting radii 1.2 < ro/a < 
1.35 for steel indenters on TiC plates. These values are 
much larger than the expected ones. Measurements 
with TiC indenters give ro/a < 1, what is less than the 
expected value. 

In fact, as for the hertzian fracture, the dispersion of 
the ro/a measurements is large when the flaw size c~/a 
is small. On the other hand, Fig 2 shows that the a~ 
stress remains tensile in the contact circle w h e n f  > 0 
(contrary to the purely hertzian case), so that the crack 
can start in that zone beneath a sliding contact. 

However, these values have been obtained with 
computed contact areas. As shown in the previous 
paper [7], the true contact radius is much larger than 
the computed one, due to the surface roughness. That 
could partially explain the discrepancies between the 
theory and the experimental measurements. 

5.2. The critical load and the reduction ratio 
Measured Pc/R on glass [10, 11] are shown in Fig. 17. 
The plotted lines are the theoretical predictions, com- 
puted from Equation 12 with ~ = 3 .2Jm -2 for three 

.,Oc/,,c?( N m "1} 

. \ •  
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Figure 17 Normalized critical load as function of  the friction coef- 
ficient. The theoretical predictions are plotted with two values of  the 
fracture surface energy ( - . - . )  ~ = 5 J m  -2, ( ) 7 - 3 . 2 J m  z, 
and for three values of  the normalized punch radius and they are 
compared  with the experimental results o f  Enomoto  [10]; [] 
R = 1 mm, • R = 2.5 mm, and Gilroy and Hirst [11]; • R = 2 mm,  
• R = 4 .4mm,  • R = 4 .8mm,  • R = 9 .5mm,  and Chiang and 
Evans [17]; R = 1 .6mm • Si3N 4, zx glass (pristine), v glass 

(abraded), k = 1.35. 
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values of R/c 3/2 (continuous lines) and 7 = 5.0Jm -2 
(dashed lines). 

Experiments agree qualitatively well with the 
theoretical results. Pc/R decreases with R/c~ i2 as 
predicted and the variation of Pc/R against f for a 
given punch radius confirms the theoretical results. 

However a great dispersion is observed, probably 
due to the following causes: 

1. The critical loads are measured in various environ- 
mental media (water, paraffin, air, etc.) which, as 
described by Enomoto [10], modify the intrinsic surface 
energy of the material. However, the initial flaws being 
always very small (except for the abraded glass speci- 
men of Chiang and Evans [17]), the crack velocity is 
high (as proposed by Mouginot and Maugis [7]) and 
can even reach a critical speed corresponding to catas- 
trophic failure. In this case adsorption effects are less 
important at crack tip and surface energy is less modi- 
fied (Maugis [24])• 

2. The friction coefficient is considered by these 
authors [10, 17] as being independent of the applied 
load. Results obtained by Powell and Tabor [18] on 
TiC show that for a given environmental medium the 
friction coefficient varies with the mean pressure pro- 
portional to (P/R2) 1/3 as plotted in Fig. 18. The 
increase of Pc/R with R at g ivenffound by Gilroy and 
Hirst [11] can then be explained by an overvaluation 
of the friction coefficient. Results from Adewoye and 
Page [25] show that the friction coefficient must be 
measured carefully and at any stage of the loading 
since it varies strongly with the applied load. 

The reduction factor between the critical loads 
under sliding and normal Hertzian contact can also be 
analysed. Gilroy and Hirst (glass) and Powell and 
Tabor (TIC) results, which are in good agreement with 
the theory, are plotted on Fig. 14. The continuous 
lines correspond to this theory for three values of 
R/c~/2, while dashed lines correspond to the lower 
bound of this theory (given first by Gilroy and Hirst), 
plotted for different values of the Poisson's ratio. 

Lawn's formula [9] is not plotted. It was based on 
wrong assumptions: the P* critical load (correspond- 
ing to the local minimum of the • curve) proposed by 
Lawn does not exist for v < 0.33 and for normalized 
crack starting radii greater than 1. This is probably the 
greatest drawback of his analysis. The choice of the 
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Figure 18 Friction coefficient as function of  the normalized mean  
pressure. F r o m  results of  Powetl and Tabor  [18]. 



T A B L E  I Comparison between critical load ratios obtained experimentally by Powell and Tabor [14] and the computed ones in the 
lower bound case (Gilroy and Hirst) and the general case 

R (mm) f 2 (exp) 2 (Gilroy and Hirst) 2 (general method) 

cf = 1/tm ef = 0.5#m 

0.55 0.16 0.182 0.087 0.13: 0.17 
3 0.15 0.149 0.09 0..14 0.18 
5 0.12 0.212 0.133 0.20 0.23 

one-dimensional initial flaw geometry is probably less 
critical if the initial flaw size remains small in com- 
parison with the contact radius. 

When using Equation 20 Powell and Tabor [18] 
founded calculated values of 2 lower than experi- 
mental ones. They are now compared (Table I)"with 
the values obtained from Fig. 14 (Equation 17) and 
using the reasoning presented in Section 4.4 because 
experiments were made on TiC with a Poisson's ratio 
v = 0.19 when the computation used v = 0.22. 

These results may be compared with those of Chiang 
and Evans [17]. They made static contact experiments, 
leading to a partial slip situation. The friction coef- 
ficient is now given by the ratio TIN between the 
tangential and the normal components of the applied 
load on the inclinated plate, f0 is the sliding friction 
coefficient and then TIN < f0. We obtain from their 
results the values given in Table II. 

These values of measured 2 for the pristine glass are 
larger than those expected from the theory. 

This discrepancy can be probably explained by the 
highly inhomogeneous flaw repartition of different 
sizes. Another explanation is given by the existence of 
shear stresses due to the elastic mismatch between 
indenter and specimen [23], which also causes the 
unloading crack initiation. 

The values of 2 measured for abraded glass and 
Si3N 4 are approximately in agreement with the theor- 
etical prediction. Moreover the measured normalized 
critical loads Pc/R are in qualitatively good agreement 
with the theory as shown on Fig. 17. 

5.3 Maximum tensile stress for failure 
Results obtained by Barquins et al. [19] apparently 
seem to confirm the opinion of many authors that 
partial conical cracks initiate at the same maximum 
tensile stress than in the case of Hertzian fracture. 

Barquins et al, use Silicon specimens abraded with 
paper SiC 800. Then, an estimation of R/c~/2 leads to 
values close to 105m -m (Langitan and Lawn [26]). 
The measurements have been made with friction coef- 
ficient between 0.23 and 0.5, a range in which the 
stress does not vary much as shown by Fig. 15. For 
0.23 < f < 0.5 the ratio is close to 1.35 and is in 
agreement with the measured ratio 1.32 between 
the maximum tensile stress measured under sliding 

T A B L E  II  Critical load reductions ratio measured experimen- 
tally by Chiang and Evans [13] on various materials 

TIN 2 glass (pristine) 2 glass (abraded) 2 Si3N 4 

0.1 0.43 0.2 0.3 
0.2 0.28 0.1 0.17 

contact by Barquins et al. [19] and that given by Lawn 
[27] for a normal Hertzian crack. 

5.4. Fracture surface energy measurements 
Fracture surface energy has been computed for the 
soda lime glass from Gilroy and Hirst's results [11] 
and Enomoto's one [10]. Using Equation 14, results of 
the first authors give surface energy values between 
1.05 and 3.2J m -2 for R = 4.8mm and between 1.2 
and 3.6Jm -2 for R = 9.5ram. Surprisingly, sliding 
tests in water give higher values of 7 than those run in 
air. With the measurements of Enomoto [10], one 
obtains more satisfactory results: 7 = 3.2 J m -2 in air 
( f  = 0.4 and R = 2.5mm) and 7 = 2 .27Jm-2 in 
distilled water ( f  = 0.48 and R = 2.5 mm) which are 
in agreement with values calculated from normal 
Hertzian tests. 

5.5. Auerbach ' s  law 
Fig. 12 shows that Auerbach's law applies for a given 
range of R/c~/2 even f o r f  > 0. Gilroy and Hirst [11] 
found an Auerbach's range for glass with f values 
between 0.15 and 0.5 and Powell and Tabor [18] for 
TiC, with f = 0.15 approximately. 

Powell and Tabor [18] abraded their specimens with 
14/Lm diamond paste assumed 0.5#m < cf < l#m 
as cf range and used indenter radii between 0.55 and 
5mm, so that R/c~/2 range is between 55 x 105m -1/2 
and 1.4 × 107m -1/2. Following Langitan and Lawn 
[26] approximation, the flaw size would be much closer 
to 6 pm for this abrasion procedure and then 3.7 x 
104m -1/2 < R/c 3/2 < 3.4 x 105m -1/2. Auerbach's range 
applies just between both these approximations, so 
that theory agrees satisfactorily with experiments for 
small friction coefficient. However, Gilroy and Hirst 
[11] found that the upper limit of the Auerbach's range 
decreases as f increases, which is opposite to theoreti- 
cal predictions. 

6. Conclus ion 
Despite very limiting assumptions involved, the use of 
Hamilton equations for computing the stress field 
under a sliding hertzian contact and Mouginot and 
Maugis method for determining the crack equilibrium 
under such a contact can lead to analytical solutions 
which explain the main experimental results. The main 
conclusions of this study are following: 

1. The strain energy release rate for partial cone 
crack was computed for various friction coefficients. 

2. The initiation radii of the crack has been shown 
to reduce when f increases. 

3. Auerbach's law is shown to apply even i f f  > 0, 
corresponding to the relatively flat maximum of the 
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envelope of the ~ curves plotting for various crack 
starting radii. 

4. The computation of failure critical load can be 
performed by Equation 12 and provides a simple 
method for measuring fracture surface energy in the 
Auerbach's range 

5. The reduction factor for the critical load com- 
puted with this method is in good agreement with the 
experimental values. The ratio between the maximum 
tensile stresses for sliding and normal cracks is also in 
good agreement with experiments. 

6. Most aspects of the experimental results obtained 
by the previous authors can be explained by the analy- 
tical model. 
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Appendix A 
For using Hamilton's equations, two corrections are 
necessary: - for normal loading on the surface when 
r0 < a, az and ~xy should be written in cartesian 
coordinates: 

3P 
az - 2ha 3 [-- (a  2 - -  r2) 1/2] (A1) 

3P I 1 - 2v r2)1/2 rxy - ~ x y  r ~  {(a2 - -  

X [--r 2 -- 2 (a 2 _ rZ)] + ~ a 3} 1 

(A2) 

- the general expression of ax for tangential loading 
is: 

{ (4)  [( 20 3Q a x M  3 
6 x -- 2zca 3 -- X -1- 1 (]5 q- - - r  4 2 7 5 

X2 Z 2 7 v r 2 ] 
x (Sv - 2Av + z 2) -[- T -[- T - 2VX2 -+- r2 

x z N  

} - ½(z2 + 3a2) + S 4 

4a3 x z  (1 + ~ (~ 2x2"~r2 ] - 2v)} (13) 

with Q = f P ;  A = r 2 n t- z 2 - a2; S = (A 2 Jr 4a2z2)l/2; 

r 2 = x 2 q - y 2 ; M = ( S 2 A )  1 / 2 -  and N = ( ~ _ ) , / 2  

A p p e n d i x  B 
The equations of the stresses ar and ao proposed by 
Swain [10] from Mindlin [17] should be written: 

I-1 - 2v  . c o s  - } s i n 3 q ~  l + # L ~  sin ~b (1 + q~)-2 _~ } 

(m) 

~r0-  nP2(2 {1 2 2_______~v [cos q~- ½cos_2 ( ; ) ] }  

with q5 = tg l(x/z), 2 and /~ being the magnitude 
of the vertical and horizontal components respect- 
ively. For a sliding contact 2 = 0 and /~ = f,  
R 2 = x 2 + z 2. 
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